Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323.169
Filtrar
1.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564910

RESUMO

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Assuntos
Antineoplásicos , Eletrodos , Grafite , Compostos de Nitrogênio , Sulfetos , Ondas Ultrassônicas , Compostos de Zinco , Compostos de Zinco/química , Sulfetos/química , Antineoplásicos/química , Grafite/química , Flutamida/análise , Flutamida/química , Técnicas Eletroquímicas/métodos , Técnicas de Química Sintética , Eletroquímica , Limite de Detecção , Catálise , Nanocompostos/química , Nanoestruturas/química
2.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567463

RESUMO

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Assuntos
Autofagia , Neoplasias Colorretais , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Ouro/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/química , Autofagia/efeitos dos fármacos , Acetilação , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/tratamento farmacológico , Células HT29 , Caspases/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
3.
Nanoscale ; 16(16): 7786-7824, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568434

RESUMO

Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Catálise , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Microambiente Tumoral/efeitos dos fármacos , Biomimética
4.
J Med Chem ; 67(8): 6673-6686, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569098

RESUMO

The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Rabdomiossarcoma , Rutênio , Humanos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Dano ao DNA/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
5.
J Med Chem ; 67(8): 6658-6672, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569135

RESUMO

BRD4 is associated with a variety of human diseases, including breast cancer. The crucial roles of amino-terminal bromodomains (BDs) of BRD4 in binding with acetylated histones to regulate oncogene expression make them promising drug targets. However, adverse events impede the development of the BD inhibitors. BRD4 adopts an extraterminal (ET) domain, which recruits proteins to drive oncogene expression. We discovered a peptide inhibitor PiET targeting the ET domain to disrupt BRD4/JMJD6 interaction, a protein complex critical in oncogene expression and breast cancer. The cell-permeable form of PiET, TAT-PiET, and PROTAC-modified TAT-PiET, TAT-PiET-PROTAC, potently inhibits the expression of BRD4/JMJD6 target genes and breast cancer cell growth. Combination therapy with TAT-PiET/TAT-PiET-PROTAC and JQ1, iJMJD6, or Fulvestrant exhibits synergistic effects. TAT-PiET or TAT-PiET-PROTAC treatment overcomes endocrine therapy resistance in ERα-positive breast cancer cells. Taken together, we demonstrated that targeting the ET domain is effective in suppressing breast cancer, providing a therapeutic avenue in the clinic.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Proliferação de Células , Fatores de Transcrição , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Linhagem Celular Tumoral , Camundongos , Domínios Proteicos , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo
6.
Gan To Kagaku Ryoho ; 51(4): 378-382, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38644300

RESUMO

There have been many driver gene abnormalities identified in NSCLC, and the development and clinical adoption of targeting drugs for such are progressing. This has, as a result, complicated the situation surrounding companion diagnostics (CDx). Lung cancer treatment guidelines recommend the use of Multiplex testing that allow for CDx for many driver gene abnormalities to be used prior to 1L treatment for advanced lung cancer. The problem is that insurance rules stipulate that only one of Multiplex test is deemed reimbursable per junction in time, particular CDx are linked to particular targeted drugs instead of particular driver gene abnormalities, and none of the currently available Multiplex tests contain the CDx for all genetic mutations for which drugs have been approved. This results in a fair number of cases in which regulatory issues ensue. It is also very difficult to obtain enough of a tissue sample to get accurate results in Multiplex testing for advanced NSCLC. CDx are not full-proof, as results must be interpreted with a consideration of the potential for a false-negative due to the nature of tests. This paper, therefore, will focus on the issues with CDx from the viewpoint of medical oncologists in the clinical setting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Mutação , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética
9.
Support Care Cancer ; 32(5): 300, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644409

RESUMO

PURPOSE: We evaluated the efficacy of megestrol in improving chemotherapy-related anorexia by analyzing the related scales of taste alteration. METHODS: We conducted the current study on a group of advanced patients with cancer with two or more chemotherapy cycles. The chemotherapy-induced taste alteration scale (CiTAs) scale helped assess the megestrol effects on basic taste perception, aversive taste changes, unpleasant symptoms, and associated concerns. Furthermore, the Short Nutritional Assessment Questionnaire scale (SNAQ) helped measure the impact of megestrol on malnutrition likelihood in patients experiencing chemotherapy-induced anorexia. The World Health Organization Quality of Life (WHOQOL)-BREF Scale was used to evaluate the quality of life of participants, producing scores related to physical health, psychological well-being, environmental factors, and social relationships. RESULTS: The CiTAs scale assessment indicated that administering megestrol significantly enhanced taste perception among advanced patients with cancer undergoing chemotherapy. Notably, the megestrol group patients showed significantly higher Short Nutritional Assessment Questionnaire (SNAQ) scores than the control group. The megestrol group patients also exhibited higher physiological (PHYS) scores than their control group counterparts. However, this distinction was not statistically significant. The study findings indicate that patients who received megestrol demonstrated significantly higher scores in psychological (PSYCH) and environmental(ENVIR) domains than the control group. Furthermore, megestrol administration was associated with significantly elevated SOCIL and ENVIR levels in patients. CONCLUSION: The proficient efficacy evaluation of megestrol in enhancing appetite, mitigating malnutrition likelihood, and improving the quality of life of chemotherapy-induced anorexic patients can be achieved through taste-related scales.


Assuntos
Anorexia , Antineoplásicos , Neoplasias , Qualidade de Vida , Humanos , Anorexia/induzido quimicamente , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Inquéritos e Questionários , Antineoplásicos/efeitos adversos , Idoso , Adulto , Acetato de Megestrol/efeitos adversos , Acetato de Megestrol/uso terapêutico , Acetato de Megestrol/administração & dosagem , Avaliação Nutricional , Estimulantes do Apetite/uso terapêutico , Estimulantes do Apetite/administração & dosagem , Estimulantes do Apetite/efeitos adversos , Paladar/efeitos dos fármacos
10.
Int Rev Cell Mol Biol ; 385: 1-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663957

RESUMO

Cancer remains the leading cause of global mortality, prompting a paradigm shift in its treatment and outcomes with the advent of targeted therapies. Among the most prevalent mutations in RAS-driven cancers, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for approximately 86% of cases worldwide, particularly in lung, pancreatic, and colon cancers, contributing to poor prognosis and reduced overall survival. Despite numerous efforts to understand the biology of KRAS mutants and their pivotal role in cancer development, the lack of well-defined drug-binding pockets has deemed KRAS an "undruggable" therapeutic target, presenting significant challenges for researchers and clinicians alike. Through significant biochemical and technological advances, the last decade has witnessed promising breakthroughs in targeted therapies for KRAS-mutated lung, colon, and pancreatic cancers, marking a critical turning point in the field. In this chapter, we provide an overview of the characteristics of KRAS mutations across various solid tumors, highlighting ongoing cutting-edge research on the immune microenvironment, the development of KRAS-driven mice models, and the recent progress in the exploration of specific KRAS mutant-targeted therapeutic approaches. By comprehensive understanding of the intricacies of KRAS signaling in solid tumors and the latest therapeutic developments, this chapter will shed light on the potential for novel therapeutic strategies to combat KRAS-driven tumors and improve patient outcomes.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Mutação , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
11.
Int Rev Cell Mol Biol ; 385: 101-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663958

RESUMO

Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Int Rev Cell Mol Biol ; 385: 157-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663959

RESUMO

Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Terapia de Alvo Molecular
13.
AAPS PharmSciTech ; 25(5): 91, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664316

RESUMO

Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Fosfolipídeos , Fosfolipídeos/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Solubilidade , Animais , Química Farmacêutica/métodos , Disponibilidade Biológica , Emulsões/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos
14.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664366

RESUMO

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Assuntos
Autofagia , Moléculas de Adesão Celular , Morfolinas , Nectinas , Neoplasias da Bexiga Urinária , Autofagia/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Humanos , Animais , Linhagem Celular Tumoral , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Nus , Cromonas/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
16.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664493

RESUMO

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Assuntos
Antibacterianos , Antineoplásicos , Bismuto , Nanocompostos , Compostos de Tungstênio , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Bismuto/química , Bismuto/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Nanotubos de Carbono/química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2
17.
BMC Med Inform Decis Mak ; 24(1): 108, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664653

RESUMO

BACKGROUND: Mobile health (mHealth) may be an ideal solution for breast cancer (BC) patients in China to access weight management interventions. User retention and engagement are the main challenges faced by mHealth applications. A user persona, which is a user-centered design process, can lead to the development of mHealth that is more acceptable to the needs of target users. This study aimed to investigate the variety of experiences in weight management and the behavioral preferences of BC patients receiving chemotherapy to develop users' personal information and persona development for the design and implementation of mHealth interventions. METHODS: Sixteen individual semi-structured in-depth interviews were conducted with BC patients receiving chemotherapy. We employed the thematic analysis method to analyze the interview transcripts in NVivo 11 software. The themes obtained from the analysis were used as the subdomains of personas. A proforma was designed to extract each participant's experience in each subdomain. Patients who exhibited similar experience in subdomains were grouped into a persona using affinity diagrams. The personas were named according to their prominent features. A questionnaire survey was conducted to validate the personas and to test whether the personas that were generated from the qualitative interview data were applicable to the Chinese population with BC. RESULTS: Four themes were identified as subdomains of weight management personas: the perception of weight management while undergoing chemotherapy, symptoms and emotional disturbance, changes in diet and exercise, and health literacy and information seeking. Five personas were ultimately obtained: (1) positive weight controllers, (2) patients who were inactive due to fatigue, (3) young patients who avoided communication, (4) overweight patients with treatment priority, and (5) patients who engaged in irregular exercise. Finally, the quantitative study showed that 51.58% of patients chose one of these five personas to represent themselves in weight management. None of the patient reported selecting options that were not explicitly outlined in the questionnaire and provided personalized descriptions of their weight management characteristics. CONCLUSIONS: The selected personas were developed from in-depth interviews on biopsychosocial areas. They highlight different weight management patterns in Chinese BC patients and provide implications for both the design of mHealth systems and traditional interventions.


Assuntos
Neoplasias da Mama , Telemedicina , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Feminino , China , Pessoa de Meia-Idade , Adulto , Pesquisa Qualitativa , Antineoplásicos/uso terapêutico , Design Centrado no Usuário
18.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664830

RESUMO

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Assuntos
Dissulfiram , Neoplasias Pulmonares , Metaloproteinase 2 da Matriz , Nanopartículas , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Dissulfiram/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Reposicionamento de Medicamentos , Ondas Ultrassônicas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
19.
Discov Med ; 36(183): 836-841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665031

RESUMO

BACKGROUND: Over 80% of lung cancer cases constitute non-small cell lung cancer (NSCLC), making it the most prevalent type of lung cancer globally and the leading cause of cancer-related deaths. The treatment of NSCLC patients with gefitinib has demonstrated promising initial efficacy. However, the underlying mechanism remains unclear. This study aims to investigate how gefitinib affects the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway-mediated growth and death of NSCLC cells. METHODS: In this study, the NSCLC cell line A549 was cultured in vitro and divided into a control group and a gefitinib group. The viability of the A549 cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect apoptosis in A549 cells, and the expression of glutamate dehydrogenase (GDH1) mRNA in these cells was determined using real-time quantitative PCR (RT-PCR). Western blotting was utilized to evaluate the protein expression levels of key components in the MEK/ERK signaling pathway, including phospho-MEK1/2, MEK1/2, phospho-ERK1/2, and ERK1/2. Additionally, intracellular glutamine content in A549 cells was measured using a colorimetric method. RESULTS: In contrast to the control group, the proliferation of A549 cells, the transcription level of glutamate dehydrogenase (GDH1), the intracellular glutamine content, and the protein expression levels of phospho-MEK1/2 and phospho-ERK1/2 were significantly lower in the gefitinib group. Moreover, apoptosis markedly increased. CONCLUSIONS: Gefitinib expedites apoptosis and diminishes proliferation in the NSCLC cell line A549 by downregulating the epidermal growth factor receptor (EGFR)/MEK/ERK signaling pathway. This effect is accomplished by fostering the expression of GDH1 to augment glutaminolysis in A549 cells.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Glutamina , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Humanos , Gefitinibe/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Glutamina/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Glutamato Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
20.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...